
COMP 5300 / COMP 4600
Deep Learning for NLP

Lecture



Administrivia
• The class will be taught in two sessions:

− Mon 2 – 3:15 pm Dandeneau 220
− Thu 3:30 – 4:45 pm Olsen 405

• Homeworks, slides, topics: 
− class website: 

https://text-machine-lab.github.io/dl4nlp-s2023/

• Class announcements, questions:
− Make sure to join the class Discord server!

− Invite link on Blackboard!

https://text-machine-lab.github.io/dl4nlp-s2023/


Plan for next week
• Homework #1

− Will be posted tonight
− Due next Thu 2/2/23 before class!
− Use colab to do the homework
− Colab tutorial: https://neptune.ai/blog/how-to-use-google-

colab-for-deep-learning-complete-tutorial
• Mon 1/30/23

− Lecture, cont’d: Text classification and lexical embeddings
− Ask questions about HW1

• Thu 2/2/23
− Live coding session for word2vec homework (bring your 

laptops!) 
− Whatever’s not finished will become your Homework #2
− HW1 due; HW2 (w2v) assigned

https://neptune.ai/blog/how-to-use-google-colab-for-deep-learning-complete-tutorial


Lecture outline

l Lexical embeddings (= word vectors)
– count-based (sparse, dense)
– prediction-based (neural embeddings)
– evaluating lexical embeddings

l Tokenization
l Text classification



Lexical embeddings
vector space representation for word-level semantics



Naive Representation of Text Documents

One-hot representation for each word:
[0 0 0 0 1 0 0 0 0 0]
– dimensionality is |V|, size of your chosen vocabulary

Compare two documents, e.g. for classification
[0 1 0 0 1 1 0 0 1 0]
[0 0 0 0 1 0 0 0 1 0]
– 1’s in positions corresponding to the words present in the 
document
– could be (normalized) counts instead.

Use e.g. cosine or set-membership similarity measures to 
compute “distance” between two documents



Count-based Vectors

Can represent a document as a “bag of words”

Turn your text into a vector of word counts

For example, a movie review:

An unpleasant, humorless slog through the muck of low-
budget January horror fodder that is neither frightening or 
parCcularly entertaining, blandly ambling from Cred jump-
scare to Cred jump-scare."

⟨unpleasant: 1, the: 23, dog: 0, Cred:3, ...⟩



SOURCE: h*p://mlg.postech.ac.kr/research/nmf

Bag-of-Words (BOW) Representation



Bag-of-Words (BOW) Representa4on

Counts could be normalized by frequency

Probability (divide by corpus size)

Conditional probability (divide by co-
occurrence count)

Pointwise mutual information

TF-IDF

BOW representation works well for tasks 
invariant to word order, such as text 
classification



TF-IDF Weighting

TF-IDF (x) = term frequency in document / # of documents in which the term occurs.

IDF (“inverse document frequency”) penalizes counts (= reduces weights) of words that occur in 
many documents

A document could be a sentence, a paragraph, a chapter, a movie/product review, etc.



TF-IDF Weigh,ng

TF-IDF (x) = term frequency in document / # of documents in which the term occurs.

IDF (“inverse document frequency”) penalizes counts (= reduces weights) of words that occur in 
many documents

A document could be a sentence, a paragraph, a chapter, a movie/product review, etc.

2/4 = 0.5

2/2 = 1

D4 is more about “entropy”
than about “complexity”



Similarity Measures



Zipf’s Law (long tail phenomenon):
The frequency of any word is inversely proportional to its rank in the 
frequency table
A large number of events occur with low frequency. You might have to 
wait an arbitrarily long time to get valid statistics on low frequency 
events

Zipf's law – representa0ons are always sparse

Words with frequency 
of less than one in 50,000 
make up 20-30% of 
newswire reports 
(Dunning, 1993)



What about words?

One-hot representation for each word:
[0 0 0 0 1 0 0 0 0 0]
– dimensionality is |V|, size of your chosen vocabulary

Can we do better?



Representing words

One-hot representation for each word:
[0 0 0 0 1 0 0 0 0 0]
– dimensionality is |V|, size of your chosen vocabulary

Can we do better? 

Can we make it so that similar words have similar 
representations?



Distributional hypothesis

• Meaning as an invariant of similar words (Mel’chuk)
• Similar words are used in similar contexts.
• This is known as the “distributional hypothesis” (Harris, 

1985), or the “strong contextual hypothesis” (Miller and 
Charles, 1991), and related to the much-quoted 
remark by Firth (1957)

“You shall know a word by the company it keeps”



Meaning from context

Consider occurrence contexts of an unknown word, tezgüino

C1: A bottle of tezgüino is on the table
C2: Everybody likes tezgüino

C3: Don’t have tezgüino before you drive.
C4: We make tezgüino out of corn.

Distributional statistics for tezgüino:



What about words?

Can we make it so that similar words have similar representations?
• Represent each word as a collection of contexts in which it has 

occurred in a corpus of texts



Concordance for “showed”

KWIC concordance (Key Word In Context)



Concordance for “showed”

KWIC concordance (Key Word In Context)



Concordance for “showed”

KWIC concordance (Key Word In Context)



Context defini+on

Example: “was haggard and his eyes showed the fear that was upon”

Window BOW context (+5/-5):
{was, haggard, and, his, eyes, the, fear, that, was, upon}

Structured context (+5/-5):
{(was, −5), (haggard, −4), (and, -3), (his, -2), (eyes, -1), (the, +1), (fear, +2), (that, +3), 
(was, +4), (upon, +5)}

Dependency context:
{(eyes, NSUBJ ), (fear, DOBJ ), … }





Bag-of-Words (BOW) Representation

Counts could be normalized:

Condi&onal probability (divide by co-
occurrence count)

TF-IDF

Pointwise mutual informa&on

Count (x) = how many times a term x occurs 
within a context window of the target word w?

Conditional_Probability(x) = divide 
Count(x) by how often many times the target 
word w occurs in our corpus of texts.

TF-IDF (x) = term frequency in document / # of 
documents in which the term occurs.





Word meaning represented by word 
embeddings
Count-based frequency vectors
Dimensionality of vocabulary |V|, 100K
Sparse

Prediction-based continuous “dense” vectors
Lower dimensionality (commonly 200-500)
Continuous



Dense word embeddings



Dense Word Embeddings

1. Reduce dimensionality of count-based representation
o Principal Component Analysis (PCA), singular value 

decoposition (SVD) (also “Latent Semantic Analysis”, LSA).

2. Learn embeddings as parameters in a learning task, 
where a cost function is tied to the context

o Different approximations to the log likelihood of the full corpus



Singular Value Decomposition



SVD produces a k-rank approximation Â to matrix A minimizing the 
“distance” between the two matrices in the form of Frobenius
norm (aka 2-norm, Euclidean norm) is minimized:

Minimize the objective:
Min ||A – U ∑ VT||F

T



As linear regression can be interpreted as collapsing a two-
dimensional space onto a one-dimensional line, SVD can be 
thought of as projecting an n-dimensional space onto a k-
dimensional space where n >> k.



Folding new count-based vectors into the reduced space:
A = U ∑ VT

→ UT A = UTU ∑ VT

→ UT A = ∑ VT

U, V are orthonormal (column vectors are unit length and 
orthogonal, so UTU = I) 

Project a new count-based vector into k-dimensional space
ak= UT anew



U = (W)ords, V = (C)ontexts

A U ∑ V

ak= WT anew

Slide credit: Dan Jurafsky



Neural word embeddings



Embedding Models

Slide credit: Ed Grefenstette



word2vec (Mikolov et al 2013)



word2vec (Mikolov et al 2013)

Let vector ui = the k-dimensional embedding for word i
Let v j = k-dimensional embedding for context j.

The inner product ui · vj represents the compa?bility between word i and 
context j.

By incorpora?ng this inner product into an approxima?on to the log-
likelihood of a corpus, it is possible to es?mate both parameters by 
backpropaga?on.

word2vec includes two such approxima?ons: con?nuous bag-of-words 
(CBOW) and skip-gram.





Word2vec CBOW

BOW b/c order of words doesn’t matter
h determines window size
Local context is computed as an average of embeddings 

for words in the immediate neighborhood m − h, m − h 
+ 1, . . . , m + h − 1, m + h



Word2vec CBOW

Words are predicted from context
Optimizes approximation to corpus log likelihood

M is the size of the corpus

j

j



word2vec – continuous bag of words 
(CBOW)

Slide credit: Ed Grefenstette



word2vec – continuous bag of words 
(CBOW)

Slide credit: Ed Grefenstette



Word2vec Skip-Gram

Contexts are predicted from words

j j

j



word2vec – Skip-gram

Slides from Ed Grefenstette



word2vec – Skip-gram

Slides from Ed Grefenstette

– probabilities of the context words, that is



Time Complexity

CBOW and skipgram have a linear time complexity in the size 
of the word and context representations.

But! they compute a normalized probability over word tokens – a 
naı̈ve implementation requires summing over the entire vocabulary.

The time complexity of this sum is O(V × K) for k-dimensional 
embeddings – which dominates all other computational costs.

One solution is negative negative sampling:
Negative sampling is an approximation that eliminates the 

dependence on vocabulary size!



Negative sampling

Likelihood-based methods are expensive b/c each 
probability must be normalized over the vocabulary

These probabilities are based on similarity scores 
between words and contexts for each word in each 
context.

Can we define an alternative objective based on the 
same word-context co-occurrence scores ψ(w, c)?



Negative sampling
Seek word embeddings that maximize the difference between the score for the 

word observed in context, and the scores for several randomly selected 
“negative samples” (words that did not occur in that context):

- where ψ(i, j) is the score for word i in context j, Wneg is the set of negative 
samples.

1 – σ (x) = σ(–x) i.e. probability that x did not occur (cf. σ(x) graph)

The objective is to maximize the sum over the corpus:  

∑ ψ(wm , cm )

i.e. log product probability of each encountered context in corpus by probability that 
negative samples for that context didn’t occur



Nega%ve Sampling

The set of negative samples Wneg is obtained by sampling from a 
unigram language model.

Unigram language model constructed by exponentiating the 
empirical word probabilities, setting p̂(i) ∝ (count(i))^(3/4) .

This has the effect of redistributing probability mass from common 
to rare words.

The number of negative samples increases the time complexity of 
training by a constant factor.

5-20 negative samples works for small training sets, and that two to 
five samples suffice for larger corpora.



Word Embeddings as Matrix factoriza5on

The negative sampling objective is linked to the matrix factorization 
objective employed in latent semantic analysis.

For a matrix of word-context pairs in which all counts are non-zero, 
negative sampling is equivalent to factorization of the matrix M,
where Mij = PMI(i, j) − log k

- each cell in the matrix is equal to the pointwise mutual 
information of the word and context, shifted by log k, with k equal 
to the number of negative samples (Levy and Goldberg, 2014)

- k is the number of negative samples in SGNS

Word embeddings are obtained by factoring this matrix with 
truncated singular value decomposition.



GloVe Embeddings (Stanford)

Another matrix factorization approach. The matrix to be factored is 
constructed from log co-occurrence counts, M i j = count(i, j).

Weighted least squares is the objective:

where bi and bj are biases for word i and context j, which are 
estimated jointly with the word embedding u and context 
embedding v.  

The weighting function f(Mi j) is set to 0 at Mij = 0
To avoid overweighing frequent context-word pairs:
f(Mij) =  (Mij / threshold )3/4 if Mij < threshold, 1 otherwise



Evaluating lexical embeddings
(vector space representation for word-level semantics)

How good are these representations?



Evaluation of word embeddings

• WordSim-353 (Finkelstein et al. 2003)
contains two sets of English word pairs along with human-assigned 
similarity judgements

• SimLex-999 (Hill et al. 2016, but has been around since 2014)

• Word analogy task (Mikolov et al. 2013), queen = king - man + 
woman.

• Embedding visualization (nearest neighbors, T-SNE projection)



T-SNE – dimensionality reduc6on technique

“Distributed stochastic neighbor embedding” (Maaten & Hinton 

2008)

Projects points into 2d space by minimizing KL-divergence between 

two probability distributions between pairs of objects in high-

dimensional space, and pairs of objects in low-dimensional 

space

similar pairs (e.g. via Eucledian distance) have high probability, 

dissimilar pairs have low probability



Evalua&on of word embeddings

Nearest neighbors using t-SNE visualization technique

From: http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/



Word Similarity / Relatedness



Evaluation of word embeddings

Analogies

SOURCE: h*ps://www.ed.ac.uk/informa<cs/news-events/stories/2019/king-
man-woman-queen-the-hidden-algebraic-struct



Different Ways to do Analogies with the 
Same Embedding Scheme

ANALOGY

a to b is as a’ to b’

TASK: Given a, b, and a’, find b’

METHOD 1 (Mikolov et al 2013)

b’ = argmaxV (cos b’, b – a + a’)

METHOD 2 (Levy & Goldberg 2014)

b’ = argmaxV (cos b’– b,  a’ – a)



The Analogy Test



Google Analogy Test (Mikolov et al 2013)

9 morphological categories: adjective-to-adverb, comparatives, 
superlatives, verb:present-participle, country-nationality, 
verb:past-tense, verb:3PsSg-plural, opposites.

5 semantic categories: common countries and capitals, countries 
and capitals of the world, city-in-state, country-and-currency, 
male:female.

20-70 unique word pairs per category.
8,869 semantic and 10,675 morphological questions in total.



Bigger Analogy Test (Gladkova et al 2016)



Analogies?

Why should different linguistic relations translate to exactly 
the same vector offsets for all words?



Other Methods of Evalua1on

Extrinsic evaluation via performance on downstream 
tasks (POS-tagging, chunking, NER, sentiment polarity, 
NLI)

Behavioral evaluation: correlation with similarity judgments, 
intrusion, N400 effect, fMRI scans, eye-tracking, and 
semantic priming data.



Benefits of Neural Approaches

Easy to learn, especially with good linear algebra 
libraries.

Highly parallel problem: minibatching, GPUs, distributed 
models.

Can predict other discrete aspects of context 
(dependencies, POS tags, etc). Can estimate these 
probabilities with counts, but sparsity quickly becomes 
a problem.

Can predict/condition on continuous contexts: e.g. 
images.



Comparison with count-based methods

Count based and objective-based models: same general 
idea.

Word2Vec == PMI matrix factorization of count based 
models (Levy and Goldberg, 2014)

Count-based and most neural models have equivalent 
performance when properly hyper parameters are 
properly optimized (Levy et al. 2015)

Slide credit: Ed Grefenstette



Tokeniza)on



Remember tokeniza.on?

Tokenization is splitting text into meaningful units that 
form your vocabulary
- words, punctuation
- can use white-space segmentation to get words (roughly)

Tokens are not just words
Word-internal punctuation: Ph.D., AT&T, Google.com, 555,500.50

Expanding clitics: I'm → I am
Multiword tokens: New York, Rock ‘n’ roll

Word vectors are really token vectors!



Texts are sparse! 

Many words (tokens) never seen even in large texts.
What if your test data contains words that are not in your training data?
You get the so-called “out of vocabulary" words (OOV)
People would add a special “<unknown>” token to their vocabulary
During training, use this token for unseen words in validation data.

Out-of-vocabulary words



A better solution – subword tokenization

• Can we construct a vocabulary of meaningful subwords?
• Use the data to tell us how to tokenize!
• Tokens could be subwords, i.e. variable-length character 

ngrams
• That way, out-of-vocabulary words can sometimes be 

represented reasonably.



Subword tokeniza/on

• Byte-Pair Encoding (Sennrich et al, 2016)
• WordPiece (Schuster and Nakajima, 2012)

Two parts:
Token learner takes a raw training corpus and induces a 

vocabulary (a set of tokens)
Token segmenter takes a raw test corpus and tokenizes it 

according to the vocabulary



Byte Pair Encoding (BPE) Tokeniza5on

• Let the ini(al vocabulary be the the set of individual 
characters = {A, B, C, D, … , a, b, c, ….}

Repeat
o Choose two symbols that are most oCen adjacent in the training 

corpus (e.g. “t” and “h”)

o Add a new merged symbol “th” to the vocabulary

o Replace every adjacent “t” and “h” with “th” in the training corpus

Un(l k merged have been done.



Byte Pair Encoding (BPE) Tokenization

• BPE will o)en deduce frequent subwords:
morphemes like –est, –er, un–, etc. 

• Most subword algorithms are run inside space-separated 
tokens, adding a special end-of-word character before each 
space.

• That way, word-final combinaDons of leEers get a different 
treatment than word-internal combinaDons



BPE Example

Training text: “This runner jumped higher”
• Initial vocabulary: 

t, h, i, s, r, u, n, e, j, u, m, d, j, i, g, <eow>

• Initial tokenization
t h i s <eow> r u n n e r <eow> j u m p e d <eow> h i g h  e r <eow>

• Merge “e” and “r”: 
T h i s <eow> r u n er <eow> j u m p e d <eow> h i g h er <eow>

• Merge “er” and “<eow>
T h i s <eow> r u n n er<eow> j u m p e d <eow> h i g h er<eow>



WordPiece

• Popularized by BERT, which was the first pretrained 
transformer encoder.

• Instead of relying on the frequency of token pairs during 
the merge, at each merge step: 

− Train a language model at each step 

− Merge the token that maximizes the likelihood of the 
training data, i.e.

• p(t1 t2) > p(t1) p(t2) 

• MI(t1, t2) is greater than for any other pair



Text Classifica-on



Text Classifica-on Examples

• Identifying topics
- sports / politics / finance / …

• Subject headings for books / articles
- MeSH headings: Drug Therapy / Embryology / …

• Sentiment analysis
• Authorship identification
• Spam detection
• etc.



Text Classifica-on

Input:
a document d ∈ D
a fixed set of classes C = {c1 … ck}
Output:
a predicted class c ∈ C
a trained model → a learned classification function f : D → C



Supervised
Task

• Create a labeled corpus
select texts, pick categories, assign labels

• Split it into test and training segments

• Choose a representa8on, i.e. how each text will be represented
• Choose a classifier model
Naive Bayes, Decision Tree, Logis8c Regression, SVM, Neural Network

• Train the model on the training data
• Test model performance on the test data
• If sa8sfactory, use the model to process unseen text

Workflow



Could be any of your favorite classifier models:

Logis8c regression (LR), support vector machine (SVM), mul8-layer 

perceptron (MLP), deep neural network (the last hidden state is 

used as input to a soFmax layer that does classifica8on), etc.

Consider text classifica8on done by applying logis&c 
regression (soFmax) to vector representa8ons of input text

Project into an soFmax layer of dimensionality |C|

Apply soFmax to find highest-probability category

Text Classifica-on Models



Multiclass Logistic Regression

Vector representation of the document is used as input to 
a softmax layer that does classification, assigning a 
probability to each label yi:

x1 x2 x3

Weight matrix W

x = W s
xi = wj s
xi = ∑sjwij



So#max opera*on

SOURCE: https://vitalflux.com/what-softmax-function-why-needed-machine-learning/



Vector Space Embeddings

“Count-based” vectors

Variously normalized word count-based representations

Vocabulary-size dimensionality reduced via PCA, SVD, etc.

Learned vectors (“prediction-based”)

Learn embeddings as parameters in a learning task

Where the cost function e.g. maximizes the probability of your 
training text



Bag-of-Words (BOW) Representation

Element-wise “add” of count-based word vectors

Counts could be normalized by frequency

Probability (divide by corpus size)

Condi?onal probability (divide by co-occurrence count)

Pointwise mutual informa?on

TF-IDF

Dimensionality reduc?on via PCA, SVD, etc.



Predic'on-based (i.e. learned) vector space embeddings
Word-level embeddings
Text-level embeddings (sentence, paragraph, etc.)

Parameter vectors, trained to maximize e.g.,
e.g. the probability of word sequences in available text

Learned vectors



Using learned word-level embeddings for sentence 
representa6on

How do we use them?
What’s the “BoW” representa6on?

Learned vectors



Baselines for Represen.ng Input Text

BoW approach with learned word vectors
Element-wise “add” of learned word vectors, equivalent to:
Mean-pooling (average) over pretrained word vectors (learned 
in pre-training on free text)
May also do max-pooling (max)



Baselines for Representing Input Text

“A simple but tough to beat baseline for sentence 
embeddings". Arora et al ICLR 2017.

Compute sentence representa@ons using weighted averaging over 
BoW word embeddings

– Similar to TF-IDF, downweigh frequent words

Do PCA (principal component analysis) over sentences

Subtract from the sentence representa@on its projec@on on the first 
PCA component

Good unsupervised performance on seman@c 
similarity/relatedness; good ini@aliza@on on supervised 
classifica@on tasks (sen@ment, entailment, etc.)



Sample Classifica-on Tasks

Sentiment
“This movie was actually neither that funny, nor super witty.”
Labels: positive, negative, neutral

Entailment
“The maniac killed his victim” – “His victim died”
“The maniac killed his victim” – “His victim survived”

Labels: Entailment, Contradiction, Neutral



Predic'on-based (i.e. learned) vector space embeddings
Word-level embeddings
Text-level embeddings (sentence, paragraph, etc.)

Parameter vectors, trained to maximize e.g.,
e.g. the probability of word sequences in available text

Learned vectors



Predic'on-based (i.e. learned) vector space embeddings
Word-level embeddings
Text-level embeddings (sentence, paragraph, etc.)

Parameter vectors, trained to maximize e.g.,
e.g. the probability of word sequences in available text

Learned vectors



Vector space embeddings for linguistic inputs in DL are 
usually learned by using some semi-supervised objective 
function

i.e. the function that does not require manually tagged data

For example, a function that maximizes the probability of 
existing data

As we saw in learned word-level embeddings (lexical vectors).

Semi-supervised objec1ve



Maximizing the probability of exis5ng data
This is the so-called language modeling: 
assigning probabili5es to word sequences
(or character sequences).  

There is unlimited data on which to train 
these models: the model just needs to 
learn to predict the words in exis4ng text.

Language Modeling

Image credit: https://blog.feedly.com/nlp-breakfast-2-the-rise-of-language-models/



There are other semi-supervised objectives, as we’ll see.
• Masked language model (denoising auto-encoder objective)
• Span in-filling objective

Sentence-based objectives
o predicting next sentence
o ordering sentences

o discriminating between next sentence and random sentence, etc.

Semi-supervised objec1ves



Prediction-based Vectors

ConvNets (CNNs) applied over concatenated word vectors to 
do classification

[popular ca. 2013 – 2015]
Skip-thought sentence representations based on 

reconstructing previous / next sentence [2015]
GRU RNN encoder/decoder



Predic'on-based Vectors

Sequence-to-sequence autoencoders – op1mizes the  
reconstruc1on accuracy for the input sentence, which is 
reconstructed word by word.

Special CLS embeddings learned by a@en1on-based 
Transformer models trained to predict masked words in free 
text

BERT CLS embeddings (pre-trained bi-direc1onal transformer) 
[Devlin et al 2018]
Universal Sentence Encoder (Transformer trained on a skip-
thought sentence-predic1on task, and several supervised 
tasks) [Cer et al 2018]



Transformer-Based Pre-training for Input 
Representa6ons

Special CLS embeddings learned by attention-
based Transformer models are used to represent 
input text

BERT [Devlin et al 2019], a Transformer-based 
encoder model is trained to predict a) masked 
words in free text (“masked language modeling” 
objective, and b) next sentence

BERT (and similar architectures) are trained on free 
text (“pre-training”), then fine-tuned for the 
specific task (e.g. text classification), using 
supervised learning.

Input tokens are typically subwords, and use 
WordPiece [Schuster and Nakajima 2012] or 
(more commonly) Byte Pair Encoding [Sennrich
et al. 2016] to deal with out-of-vocabulary 
problem.

BERT Encoder



Lab : Homework 1 (see course schedule)


