
COMP 5300 / COMP 4600
Deep Learning for NLP

Lecture



Plan for next week
• Homework #2

− Will be posted tonight
− Due next Tue 1/30/24 at midnight
− Use colab to do the homework
− Colab tutorial: 

https://neptune.ai/blog/how-to-use-google-colab-for-deep-l
earning-complete-tutorial

• Homework #1
− Was due last night at midnight
− Can submit by EOD today or tomorrow, 10% off each day

• Today’s lecture
− Text classification and lexical embeddings

https://neptune.ai/blog/how-to-use-google-colab-for-deep-learning-complete-tutorial
https://neptune.ai/blog/how-to-use-google-colab-for-deep-learning-complete-tutorial


Lecture outline

● Lexical embeddings (= word vectors)
– count-based (sparse, dense)
– prediction-based (neural embeddings)
– evaluating lexical embeddings

● Tokenization
● Text classification



Lexical embeddings
vector space representation for word-level semantics



Naive Representation of Text Documents

One-hot representation for each word:
[0 0 0 0 1 0 0 0 0 0]
– dimensionality is |V|, size of your chosen vocabulary

Compare two documents, e.g. for classification
[0 1 0 0 1 1 0 0 1 0]
[0 0 0 0 1 0 0 0 1 0]
– 1’s in positions corresponding to the words present in the 
document
– could be (normalized) counts instead.

Use e.g. cosine or set-membership similarity measures to 
compute “distance” between two documents



Count-based Vectors

Can represent a document as a “bag of words”
Turn your text into a vector of word counts
For example, a movie review:

An unpleasant, humorless slog through the muck of 
low-budget January horror fodder that is neither 
frightening or particularly entertaining, blandly ambling 
from tired jump-scare to tired jump-scare."

⟨unpleasant: 1, the: 23, dog: 0, tired:3, ...⟩



SOURCE: 
http://mlg.postech.ac.kr/research/nmf

Bag-of-Words (BOW) Representation



Bag-of-Words (BOW) Representation

Counts could be normalized by frequency

Probability (divide by corpus size)

count(w1)/N

Conditional probability (divide by 
co-occurrence count)

P(w1)/P(w1, w2)

Pointwise mutual information

log P(w1, w2)/P(w1)P( w2)

TF-IDF

count(w1)/doc_count(w1)

BOW representation works well for tasks 
invariant to word order, such as text 
classification



TF-IDF Weighting

TF-IDF (x) = term frequency in document / # of documents in which the term 
occurs.

• IDF (“inverse document frequency”) penalizes counts (= reduces weights) of words 
that occur in many documents

• A document could be a sentence, a paragraph, a chapter, a movie/product review, etc.



TF-IDF Weighting

2/4 = 0.5

2/2 = 1

D4 is more about “entropy”
than about “complexity”

TF-IDF (x) = term frequency in document / # of documents in which the term 
occurs.

• IDF (“inverse document frequency”) penalizes counts (= reduces weights) of words 
that occur in many documents

• A document could be a sentence, a paragraph, a chapter, a movie/product review, etc.



Similarity Measures



Text Classification



Text Classification Examples

• Identifying topics
- sports / politics / finance / …

• Subject headings for books / articles
- MeSH headings: Drug Therapy / Embryology / …

• Sentiment analysis
• Authorship identification
• Spam detection
• etc.



Text Classification

Input:
a document d ∈ D
a fixed set of classes C = {c1 … ck}
Output:
a predicted class c ∈ C
a trained model → a learned classification function f : D 
→ C



Supervised
Task

• Create a labeled corpus
select texts, pick categories, assign labels

• Split it into test and training segments

• Choose a representation, i.e. how each text will be represented
• Choose a classifier model

Naive Bayes, Decision Tree, Logistic Regression, SVM, 
Neural Network

• Train the model on the training data
• Test model performance on the test data
• If satisfactory, use the model to process unseen text

Workflow



Could be any of your favorite classifier models:
Logistic regression (LR), support vector machine (SVM), 
multi-layer perceptron (MLP), deep neural network (the last 
hidden state is used as input to a softmax layer that does 
classification), etc.

If text classification done by applying logistic regression 
(softmax) to vector representations of input text

• Project into an softmax layer of dimensionality |C|
• Apply softmax to find highest-probability category

Text Classification Models



Multiclass Logistic Regression

Vector representation of the document is used as input to 
a softmax layer that does classification, assigning a 
probability to each label yi:

x1 x2 x3

Weight matrix W

x = W s
xi = wj s 
xi = ∑sjwij



Softmax operation

SOURCE: https://vitalflux.com/what-softmax-function-why-needed-machine-learning/



Sample Classification Tasks

Sentiment
“This movie was actually neither that funny, nor super witty.”

Labels: positive, negative, neutral

Entailment
“The maniac killed his victim” – “His victim died”

“The maniac killed his victim” – “His victim survived”

Labels: Entailment, Contradiction, Neutral



What about words?

One-hot representation for each word:
[0 0 0 0 1 0 0 0 0 0]
– dimensionality is |V|, size of your chosen vocabulary

Can we do better?



Representing words

One-hot representation for each word:
[0 0 0 0 1 0 0 0 0 0]
– dimensionality is |V|, size of your chosen vocabulary

Can we do better? 

Can we make it so that similar words have similar 
representations?



Distributional hypothesis

• Meaning as an invariant of similar words (Mel’chuk)
• Similar words are used in similar contexts.
• This is known as the “distributional hypothesis” (Harris, 

1985), or the “strong contextual hypothesis” (Miller and 
Charles, 1991), and related to the much-quoted remark 
by Firth (1957)

“You shall know a word by the company it keeps”



Meaning from context

Consider occurrence contexts of an unknown word, tezgüino

C1: A bottle of tezgüino is on the table

C2: Everybody likes tezgüino

C3: Don’t have tezgüino before you drive.

C4: We make tezgüino out of corn.

Distributional statistics for tezgüino:



What about words?

Can we make it so that similar words have similar representations?
• Represent each word as a collection of contexts in which it has 

occurred in a corpus of texts



Concordance for “showed”

KWIC concordance (Key Word In Context)



Concordance for “showed”

KWIC concordance (Key Word In Context)



Concordance for “showed”

KWIC concordance (Key Word In Context)



Context definition

Example: “was haggard and his eyes showed the fear that was upon”

Window BOW context (+5/-5):
{was, haggard, and, his, eyes, the, fear, that, was, upon}

Structured context (+5/-5):
{(was, −5), (haggard, −4), (and, -3), (his, -2), (eyes, -1), (the, +1), (fear, +2), (that, 
+3), (was, +4), (upon, +5)}

Dependency context:
{(eyes, NSUBJ ), (fear, DOBJ ), … }





Bag-of-Words (BOW) Representation

Counts could be normalized:

Conditional probability (divide by 
co-occurrence count)

TF-IDF

Pointwise mutual information

Count (w) = how many times a term w occurs in 
our corpus; normalize by corpus size N  to get 
p(w).

Conditional_Probability(w|c) = divide the number of 
times our target word w coccurs with the context 
word c in our corpus, i.e. Count(w, c) by the total 
occurrence count of c, Count(c).

TF-IDF (w) = term frequency in document / # of 
documents in which the term occurs.





Word meaning represented by word 
embeddings

Count-based frequency vectors
• Dimensionality of vocabulary |V|, 100K
• Sparse

Prediction-based continuous “dense” vectors
• Lower dimensionality (commonly 200-1000)
• Continuous



Dense word embeddings



Dense Word Embeddings

1. Reduce dimensionality of count-based representation
o Principal Component Analysis (PCA), singular value 

decoposition (SVD) (also “Latent Semantic Analysis”, LSA).

2. Learn embeddings as parameters in a learning task, 
where a cost function is tied to the context

o Different approximations to the log likelihood of the full corpus



Singular Value Decomposition



SVD produces a k-rank approximation Â to matrix A minimizing the 
“distance” between the two matrices in the form of Frobenius 
norm (aka 2-norm, Euclidean norm) is minimized:

Minimize the objective:

Min ||A – U ∑ VT||F

T



As linear regression can be interpreted as collapsing a 
two-dimensional space onto a one-dimensional line, SVD can be 
thought of as projecting an n-dimensional space onto a 
k-dimensional space where n >> k.



Folding new count-based vectors into the reduced space:

A = U ∑ VT

→ UT A = UTU ∑ VT

→ UT A = ∑ VT

U, V are orthonormal (column vectors are unit length and 
orthogonal, so UTU = I) 

Project a new count-based vector into k-dimensional space

ak= UT anew



U = (W)ords, V = (C)ontexts

A U ∑ V

ak= WT anew

Slide credit: Dan Jurafsky



Vector Space Embeddings

“Count-based” vectors
• Variously normalized word count-based 

representations
• Vocabulary-size dimensionality reduced via PCA, SVD, 

etc.
Learned vectors (“prediction-based”)
• Learn embeddings as parameters in a learning task
• Where the cost function e.g. maximizes the probability 

of your training text



Neural word embeddings



Embedding Models

Slide credit: EdGrefenstette



word2vec (Mikolov et al 2013)



word2vec (Mikolov et al 2013)

Let vector ui = the k-dimensional embedding for word i
Let vj  = k-dimensional embedding for context j.
The inner product ui · vj represents the compatibility between word i 

and context j.
By incorporating this inner product into an approximation to the 

log-likelihood of a corpus, it is possible to estimate both 
parameters by backpropagation.

word2vec includes two such approximations: continuous 
bag-of-words (CBOW) and skip-gram.





Word2vec CBOW

BOW b/c order of words doesn’t matter
h determines window size
Local context is computed as an average of embeddings 

for words in the immediate neighborhood of m:
m − h, m − h + 1, . . . , m + h − 1, m + h



Word2vec CBOW

Words are predicted from context
Optimizes approximation to corpus log likelihood

M is the size of the corpus

j

j



word2vec – continuous bag of words 
(CBOW)

Slide credit: Ed Grefenstette



word2vec – continuous bag of words 
(CBOW)

Slide credit: Ed Grefenstette



Word2vec Skip-Gram

Contexts are predicted from words

j j

j



word2vec – Skip-gram

Slides from Ed Grefenstette



word2vec – Skip-gram

Slides from Ed Grefenstette

– probabilities of the context words, that is



Time Complexity

CBOW and skipgram have a linear time complexity in the size 
of the word and context representations.

But! they compute a normalized probability over word tokens – a 
naı̈ve implementation requires summing over the entire vocabulary.

The time complexity of this sum is O(V × K) for k-dimensional 
embeddings – which dominates all other computational costs.

One solution is negative negative sampling: 
Negative sampling is an approximation that eliminates the 
dependence on vocabulary size!



Negative sampling

Likelihood-based methods are expensive b/c each 
probability must be normalized over the vocabulary

These probabilities are based on similarity scores 
between words and contexts for each word in each 
context.

Can we define an alternative objective based on the 
same word-context co-occurrence scores ψ(w, c)?



Negative Sampling

Seek word embeddings that maximize the difference between the score for the 
word observed in context, and the scores for several randomly selected 
“negative samples” (words that did not occur in that context):

- where ψ(i, j) is the score for word i in context j, Wneg is the set of negative 
samples.

1 – σ (x) = σ(–x) i.e. probability that x did not occur (cf. σ(x) graph)

The objective is to maximize the sum over the corpus:  

∑ ψ(wm , cm )

i.e. log product probability of each encountered context in corpus by probability that 
negative samples for that context didn’t occur



Negative Sampling

The set of negative samples Wneg is obtained by sampling from a 
unigram language model.

Unigram language model constructed by exponentiating the 
empirical word probabilities, setting p̂(i) ∝ (count(i))^(3/4) .

This has the effect of redistributing probability mass from common 
to rare words.

The number of negative samples increases the time complexity of 
training by a constant factor.

5-20 negative samples works for small training sets, and that two to 
five samples suffice for larger corpora.



Word Embeddings as Matrix factorization

The negative sampling objective is linked to the matrix factorization 
objective employed in latent semantic analysis.

For a matrix of word-context pairs in which all counts are non-zero, 
negative sampling is equivalent to factorization of the matrix M,

where Mij = PMI(i, j) − log k

- each cell in the matrix is equal to the pointwise mutual 
information of the word and context, shifted by log k, with k equal 
to the number of negative samples (Levy and Goldberg, 2014)

- k is the number of negative samples in SGNS

Word embeddings are obtained by factoring this matrix with 
truncated singular value decomposition.



GloVe Embeddings (Stanford)

Another matrix factorization approach. The matrix to be factored is 
constructed from log co-occurrence counts, M i j = count(i, j).

Weighted least squares is the objective:

where bi and bj are biases for word i and context j, which are 
estimated jointly with the word embedding u and context 
embedding v.  

The weighting function f(Mi j) is set to 0 at Mij = 0
To avoid overweighing frequent context-word pairs:
f(Mij) =  (Mij / threshold )3/4 if Mij < threshold, 1 otherwise



Evaluating lexical embeddings
(vector space representation for word-level semantics)

How good are these representations?



Evaluation of word embeddings

• WordSim-353 (Finkelstein et al. 2003)
contains two sets of English word pairs along with human-assigned 
similarity judgements

• SimLex-999 (Hill et al. 2016, but has been around since 2014)

• Word analogy task (Mikolov et al. 2013), queen = king - man + 
woman.

• Embedding visualization (nearest neighbors, T-SNE projection)



T-SNE – dimensionality reduction technique

“Distributed stochastic neighbor embedding” (Maaten & Hinton 
2008)

Projects points into 2d space by minimizing KL-divergence between 
two probability distributions between pairs of objects in 
high-dimensional space, and pairs of objects in low-dimensional 
space

similar pairs (e.g. via Eucledian distance) have high probability, 
dissimilar pairs have low probability



Evaluation of word embeddings

Nearest neighbors using t-SNE visualization technique

From: http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/



Word Similarity / Relatedness



Evaluation of word embeddings

Analogies

SOURCE: 
https://www.ed.ac.uk/informatics/news-events/stories/2019/king-man-wo
man-queen-the-hidden-algebraic-struct



Different Ways to do Analogies with the 
Same Embedding Scheme

ANALOGY
           a to b is as  a’ to b’
TASK: Given a, b, and a’, find b’
METHOD 1 (Mikolov et al 2013)
b’ = argmaxV (cos b’, b – a + a’)
METHOD 2 (Levy & Goldberg 2014)
b’ = argmaxV (cos b’– b,  a’ –  a)



The Analogy Test



Google Analogy Test (Mikolov et al 2013)

9 morphological categories: adjective-to-adverb, comparatives, 
superlatives, verb:present-participle, country-nationality, 
verb:past-tense, verb:3PsSg-plural, opposites.

5 semantic categories: common countries and capitals, countries 
and capitals of the world, city-in-state, country-and-currency, 
male:female.

20-70 unique word pairs per category.

8,869 semantic and 10,675 morphological questions in total.



Bigger Analogy Test (Gladkova et al 2016)



Analogies?

Why should different linguistic relations translate to exactly 
the same vector offsets for all words?



Other Methods of Evaluation

Extrinsic evaluation via performance on downstream 
tasks (POS-tagging, chunking, NER, sentiment polarity, 
NLI)

Behavioral evaluation: correlation with similarity judgments, 
intrusion, N400 effect, fMRI scans, eye-tracking, and 
semantic priming data.



Benefits of Neural Approaches

Easy to learn, especially with good linear algebra 
libraries.

Highly parallel problem: minibatching, GPUs, distributed 
models.

Can predict other discrete aspects of context 
(dependencies, POS tags, etc). Can estimate these 
probabilities with counts, but sparsity quickly becomes 
a problem.

Can predict/condition on continuous contexts: e.g. 
images.



Comparison with count-based methods

Count based and objective-based models: same general 
idea.

Word2Vec == PMI matrix factorization of count based 
models (Levy and Goldberg, 2014)

Count-based and most neural models have equivalent 
performance when properly hyper parameters are 
properly optimized (Levy et al. 2015)

Slide credit: Ed Grefenstette



                         Tokenization



Remember tokenization?

Tokenization is splitting text into meaningful units that 
form your vocabulary
- words, punctuation
- can use white-space segmentation to get words (roughly)

Tokens are not just words
Word-internal punctuation: Ph.D., AT&T, Google.com, 555,500.50

Expanding clitics: I'm → I am
Multiword tokens: New York, Rock ‘n’ roll

Word vectors are really token vectors!



Zipf’s Law (long tail phenomenon):
The frequency of any word is inversely proportional to its rank in 
the frequency table
A large number of events occur with low frequency. You might 
have to wait an arbitrarily long time to get valid statistics on low 
frequency events

Zipf's law – representations are always sparse

Words with frequency 
of less than one in 50,000 
make up 20-30% of 
newswire reports 
(Dunning, 1993)



Texts are sparse! 

Many words (tokens) never seen even in large texts.
What if your test data contains words that are not in your training data?
You get the so-called “out of vocabulary" words (OOV)
People would add a special “<unknown>” token to their vocabulary
During training, use this token for unseen words in validation data.

Out-of-vocabulary words



A better solution – subword tokenization

• Can we construct a vocabulary of meaningful 
subwords?

• Use the data to tell us how to tokenize!
• Tokens could be subwords, i.e. variable-length 

character ngrams
• That way, out-of-vocabulary words can sometimes be 

represented reasonably.



Subword tokenization

• Byte-Pair Encoding (Sennrich et al, 2016)
• WordPiece (Schuster and Nakajima, 2012)

Two parts:
Token learner takes a raw training corpus and induces a 

vocabulary (a set of tokens)
Token segmenter takes a raw test corpus and tokenizes it 

according to the vocabulary



Byte Pair Encoding (BPE) Tokenization

• Let the initial vocabulary be the the set of individual 
characters = {A, B, C, D, … , a, b, c, ….}

Repeat
o Choose two symbols that are most often adjacent in the training 

corpus (e.g. “t” and “h”)

o Add a new merged symbol “th” to the vocabulary

o Replace every adjacent “t” and “h” with “th” in the training 
corpus

Until k merged have been done.



Byte Pair Encoding (BPE) Tokenization

• BPE will often deduce frequent subwords:
morphemes like –est, –er, un–, etc. 

• Most subword algorithms are run inside space-separated 
tokens, adding a special end-of-word character before 
each space.

• That way, word-final combinations of letters get a different 
treatment than word-internal combinations



BPE Example

Training text: “This runner jumped higher”
• Initial vocabulary: 

t, h, i, s, r, u, n, e, j, u, m, d, j, i, g, <eow>

• Initial tokenization
t h i s <eow> r u n n e r <eow> j u m p e d <eow> h i g h  e r <eow>

• Merge “e” and “r”: 
T h i s <eow> r u n er <eow> j u m p e d <eow> h i g h 

er <eow>
• Merge “er” and “<eow>

T h i s <eow> r u n n er<eow> j u m p e d <eow> h i g h er<eow>



WordPiece

• Popularized by BERT, which was the first pretrained 
transformer encoder.

• Instead of relying on the frequency of token pairs 
during the merge, at each merge step: 

− Train a language model at each step 

− Merge the token that maximizes the likelihood of the 
training data, i.e.

• p(t1 t2) > p(t1) p(t2) 

• MI(t1, t2) is greater than for any other pair



Lab : Homework 2


