Preferred way is you connect to this server with VSCode IDE. Connecting through VSCode makes it easy to work on the python files (especially the notebooks) hosted on a server.
Host cs-gpu1
HostName 10.77.3.20
User <Your-CS-Username>
cd /home/public
mkdir <Your-CS-Username>
If you are working on `cs-gpu1`, please follow these guidelines:
Create your own directory at `/home/public/` to store Miniconda and your trained models:
mkdir /home/public/$(your_cs_username)
cd /home/public/$(your_cs_username)
nano install_miniconda.sh
Paste the following lines into `install_miniconda.sh`:
mkdir -p ./miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ./miniconda3/miniconda.sh
bash ./miniconda3/miniconda.sh -b -u -p ./miniconda3
rm -rf ~/miniconda3/miniconda.sh
./miniconda3/bin/conda init bash
./miniconda3/bin/conda init zsh
Run the following commands:
chmod +x ./install_miniconda.sh
./install_miniconda.sh
Sourcing conda:
Create a `source_conda.sh` file in your `/home/public/your_cs_name/` directory:
source /home/public/your_cs_name/miniconda3/etc/profile.d/conda.sh
conda activate base
Edit your bashrc:
Then open your bashrc file (located at: `/usr/cs/grad/doc/your_cs_name/.bashrc`) and add the following lines:
# source conda
source /home/public/your_cs_name/source_conda.sh
# changing cache folders
export WANDB_CACHE_DIR='/home/public/your_cs_name/.cache/wandb'
export HF_HOME='/home/public/your_cs_name/.cache/huggingface'
export HUGGINGFACE_HUB_CACHE="$HF_HOME/hub"
Double check that everything is set up:
source ~/.bashrc
which conda
and make sure it shows the path as:
/home/public/your_cs_name/miniconda3/bin/conda
Follow these steps to set up Git with your account:
git config --global user.name "Your Name"
git config --global user.email "your-email@example.com"
git config --global --list
ssh-keygen -t ed25519 -C "your-email@example.com"
cat ~/.ssh/id_ed25519.pub
ssh -T git@github.com